Brief information about the project

Name of the project	AR15473470 «Technology for producing nanostructured
Palavanca	materials using a vacuum arc installation>In recent decades, much attention has been paid to
Relevance	promising research in the field of ion-plasma technologies
	to produce new materials, as well as methods for applying
	metal coatings. The peculiarity of these technologies is the
	high quality of the materials produced in a vacuum, the low
	cost of raw materials and the high cost of technology in the
	final product. This project proposes the use of pulsed
	plasma accelerators, which are technologically more
	efficient due to the high flux energy density and high
	particle speed, to create new nanomaterials.
Purpose	The goal of the project is to develop a technology for
	producing several new materials by modifying the surface
	of materials under the influence of high-power plasma
	flows, as well as sputtering the surface of targets with
	pulsed plasma flows, followed by deposition of sputtered
	particles onto the surface of substrates.
Objectives	1. Development of a technique for producing
	nanostructured materials using the VDU-1 installation.
	2. Sample preparation of the surface of crystalline
	materials to create conditions for the deposition of
	nanostructured layers.
	3. Conducting experiments on the deposition of
	nanostructured layers on substrates with a prepared surface
	at various plasma parameters.
	4. Study of the structure of microlayers on the surface of
	materials and analysis of composition, tribological
	parameters.
Expected and achieved results	- for 2022 An analysis of plasma-chemical deposition
	methods will be carried out and a new technique for the
	deposition of nanomaterials will be proposed.
	- for 2023: Samples of materials with a treated surface will
	be obtained for the deposition and growth of
	nanostructures from plasma. Samples with structured
	layers deposited from arc discharge plasma will be
	obtained.
	for 2024. The lower thickness dispersion density of
	- for 2024: The layer thickness, dispersion, density of structural formations and strength characteristics of the
	deposited layers will be determined. Two (2) articles will
	be published in journals in the first three quartiles of
	impact factor in the Web of Science database or having a
	CiteScore percentile of at least 50 in the Scopus database.
Research team members with	
their identifiers (Scopus Author	• •Project Manager: Mukhamedryskyzy Marzhan
ID, Researcher ID, ORCID, if	• Жукешов Ануар Муратович, д.фм.н.,
available) and links to relevant	профессор, $h=3$, Scopus author ID: 6506178953
profiles	
profiles	

List of publications with links to	-
them	
Patents	The project is patentable.